A natural coarse graining for simulating large biomolecular motion.

نویسندگان

  • Holger Gohlke
  • M F Thorpe
چکیده

Various coarse graining schemes have been proposed to speed up computer simulations of the motion within large biomolecules, which can contain hundreds of thousands of atoms. We point out here that there is a very natural way of doing this, using the rigid regions identified within a biomolecule as the coarse grain elements. Subsequently, computer resources can be concentrated on the flexible connections between the rigid units. Examples of the use of such techniques are given for the protein barnase and the maltodextrin binding protein, using the geometric simulation technique FRODA and the rigidity enhanced elastic network model RCNMA to compute mobilities and atomic displacements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion.

The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distanc...

متن کامل

Monte Carlo, harmonic approximation, and coarse-graining approaches for enhanced sampling of biomolecular structure

The rugged energy landscape of biomolecules and associated large-scale conformational changes have triggered the development of many innovative enhanced sampling methods, either based or not based on molecular dynamics (MD) simulations. Surveyed here are methods in the latter class - including Monte Carlo methods, harmonic approximations, and coarse graining - many of which yield valuable confo...

متن کامل

Data-driven coarse graining of large biomolecular structures

Advances in experimental and computational techniques allow us to study the structure and dynamics of large biomolecular assemblies at increasingly higher resolution. However, with increasing structural detail it can be challenging to unravel the mechanism underlying the function of molecular machines. One reason is that atomistic simulations become computationally prohibitive. Moreover it is d...

متن کامل

Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics

Normal mode analysis (NMA) with coarse-grained model, such as elastic network model (ENM), has allowed the quantitative understanding of protein dynamics. As the protein size is increased, there emerges the expensive computational process to find the dynamically important low-frequency normal modes due to diagonalization of massive Hessian matrix. In this study, we have provided the domain deco...

متن کامل

Dynamics of large proteins through hierarchical levels of coarse-grained structures

Elastic network models have been successful in elucidating the largest scale collective motions of proteins. These models are based on a set of highly coupled springs, where only the close neighboring amino acids interact, without any residue specificity. Our objective here is to determine whether the equivalent cooperative motions can be obtained upon further coarse-graining of the protein str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2006